Google Earth Engine enables users to conduct a wide range of geospatial analysis, including Machine Learning.
Supervised image classification can be used for land cover analysis, for example. An example of this in action is here:
Step by Step:
Loading the Image:
var s2 = ee.ImageCollection("COPERNICUS/S2_SR")
// Perform supervised classification
// Find the feature id by adding the layer to the map and using Inspector.
var filtered = s2
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30))
.filter(ee.Filter.date('2022-01-01', '2022-01-28'))
.filter(ee.Filter.bounds(geometry))
var composite = filtered.median().clip(geometry)
var rgbVis = {min: 0.0, max: 12000, bands: ['B4', 'B3', 'B2']};
Map.addLayer(composite, rgbVis, 'image');
Create the Training Samples
Creating FeatureCollections is straightforward from the map panel- here, we have selected water features from the image and assigned them a Property (landcover) and Value (1):
This results in something like this:
Train the Classifier:
//Assign the 'landcover' property:
// ice: 0
// water: 1
// rock: 2
var gcps = ice.merge(ice).merge(water).merge(rock)
var training = composite.sampleRegions({
collection: gcps,
properties: ['landcover'],
scale: 20 ,
tileScale: 16
});
print(training)
// // Train the classifier.
var classifier = ee.Classifier.smileRandomForest(50).train({
features: training,
classProperty: 'landcover',
inputProperties: composite.bandNames()
});
Run the Classifier:
// Classify the image.
var classified = composite.classify(classifier);
Map.addLayer(classified, {min: 0, max: 2, palette: ['white', 'blue', 'brown']}, 'Classified');